ALLAMA IQBAL OPEN UNIVERSITY, ISLAMABAD

(Department of Economics)

WARNING

- 1. PLAGIARISM OR HIRING OF GHOST WRITER(S) FOR SOLVING THE ASSIGNMENT(S) WILL DEBAR THE STUDENT FROM AWARD OF DEGREE/CERTIFICATE, IF FOUND AT ANY STAGE.
- 2. SUBMITTING ASSIGNMENTS BORROWED OR STOLEN FROM OTHER(S) AS ONE'S OWN WILL BE PENALIZED AS DEFINED IN "AIOU PLAGIARISM POLICY".

Course: Applied Econometrics (2703) Level: M. Phil Economics Semester: Autumn, 2013 Total Marks: 100 Pass Marks: 50

ASSIGNMENT No. 1 (Units: 1–4)

- Q. 1Describe the ordinary least square principle of estimation. Also prove mathematically
their assumptions and properties.(20)
- Q. 2 In studying the movement in the production workers share in the value added (i.e. labour's share), the following models are considered by Gujarati. (20) Model A: $Y_t = b_a + b_1 t + u_2$

Model B: $Yt = a_0 + a_1t + a_2t^2 + u_t$

Where Y = labour's share and t = time. Based on the annual data for 1949-1964, the following results were obtained for the primary metal industry:

Model A: $Y_t = 0.4529 - 0.0041 t$ $R^2 = 0.5284$ d = 0.8252

$$(-3.9608)$$

Model B: $Y_t = 0.4786 - 0.0127 t + 0.0005 t^2$

(-3.2724) (2.7777)

 $R^2 = 0.6629$ d = 1.82

Where the figures in parentheses are t ratios.

- a) Is there serial correlation in model A? and in B?
- b) What accounts for the serial correlations?
- c) How would you distinguish between 'pure' autocorrelation and specification bias?
- Q. 3 In their article, "A Model of the Distribution of Branded Personal Products in Jamaica, John U. Farley and Harold J. Levitt developed the following model (the personal products considered were shaving cream. Skin cream, sanitary napkins, and toothpaste) (20)

$$Y_{1i} = \alpha_{1+}\beta_1Y_{2i} + \beta_2 Y_{3i} + \beta_3 Y_{4i}$$

 $Y_{2i} = \alpha_{2+}\beta_4 Y_{1i} + \beta_5 Y_{5i} + y_1 X_{1i} + y_2 X_{2i} + u_{2i}$

$$\mathbf{Y}_{3i} = \alpha_{3+}\beta_{6}\mathbf{Y}_{2i} + y_{3}\mathbf{X}_{3i} + \mathbf{u}_{3i}$$

$$\mathbf{Y}_{4i} = \alpha_{4+} \beta_7 \mathbf{Y}_{2i} + y_4 \mathbf{X}_{4i} + \mathbf{u}_{4i}$$

 $\mathbf{Y}_{5i} = \alpha_{5\, +}\,\beta_8 \mathbf{Y}_{2i} + \beta_9\,\,\mathbf{Y}_{3i} + \beta_{10}\,\,\mathbf{Y}_{4i} + u_{5i}$

Where Y_1 = Percent of stores stocking the product

- $Y_2 =$ sales in units per month
- Y_3 = index of direct contact with importer and manufacturer for the product
- $\mathbf{Y}_4 = \text{index of wholesale activity in the area}$
- Y_5 = index of depth of brand stocking for the product (i.e., average number of brands of the product stocked by stores carrying the product).
- X_1 = target population for the product
- X_2 = income per capita in the parish where the area is
- X_3 = distance from the population center of gravity to Kingston
- X_4 = distance from population center to nearest wholesale town
- a) Can you identify the endogenous and exogenous variables in the preceding model?
- b) Can one or more equations in the model be estimated by the method of least squares? Why or why not?
- Q. 4 Table below is a model in five equations with five endogenous variables Y,s and four exogenous variables X,s:
 (20)

Coefficients of the Variables									
Equation No.	<u>Y</u> 1	Y ₂	Y <u>3</u>	<u>Y</u> ₄	Y <u>5</u>	<u>X₁</u>	X <u>2</u>	<u>X</u> ₃	X_4
1	1	β_{12}	0	β_{14}	0	<i>y</i> ₁₁	0	0	<i>y</i> ₁₄
2	0	1	β_{23}	β_{24}	0	0	<i>Y</i> 23	<i>Y</i> ₂₄	0
3	β_{31}	0	1	β_{34}	β_{35}	0	0	<i>y</i> ₃₃	<i>y</i> ₃₄
4	0	β_{42}	0	1	0	<i>y</i> ₄₁	0	<i>y</i> ₄₃	0
5	β_{51}	0	0	β_{54}	1	0	<i>Y</i> 52	<i>Y</i> 53	0

Determine the identifiability of each equation with the aid of the order and rank conditions of identifications.

Q. 5 To assess the effect of the Fed's policy of deregulating interest rates beginning in July 1979, a student estimated the following model for the quarterly period 1975 – III to 1983 – II.

$$Y_t = 8.5871 - 0.1328P_t - 0.7102Un_t - 0.2389M_t$$

$$(1.9563) \quad (0.0992) \quad (0.1909) \quad (0.0727)$$

$$+ 0.6592Y_{t-1} + 2.5831Dum_t R^2 = 0.9156$$

sc

where Y = 3-month Treasury bill rate

P = expected rate of inflation

Un = seasonally adjusted unemployment rate

M = changes in the monetary base

Dum = dummy, taking value from 1 for observations beginning from July 1, 1979.

- a) Interpret these results.
- b) What has been the effect of rate deregulation? Do the results make economic sense?
- c) The coefficients of P_t, Unt, and Mt are negative. Can you offer an economic rationale?

ASSIGNMENT No. 2

(Units: 5–9)

Total Marks: 100

Q. 1 Consider the model;

 $Y_t = \alpha + \beta_1 X_{1t} + \beta_2 X_{2t} + \beta_3 Y_{t-1} + v_t$

Suppose Y_{t-1} and v_t are correlated. To remove the correlation, suppose we use the following instrumental variable approach: First regress Y_t on X_{1t} and X_{2t} and obtain the estimated Y_t from this regression. Then regress

 $Y_t = \alpha + \beta_1 X_{1t} + \beta_2 X_{2t} + \beta_3 Y_{t-1} + v_t$

Where Y_{t-1} are estimated from the first-stage regression.

- a) How does this procedure remove the correlation between Y_{t-1} and v_t in the original model?
- b) What are the advantages of the recommended procedure.
- Q. 2 (a) Since the error term in the Cobb-Douglas production function can be entered multiplicatively or additively, how would you decide between the two? (20)
 - (b) What is the difference between OLS and nonlinear least-squares (NLLS) estimation?
 - (c) The relationship between pressure and temperature in saturated steam can be expressed as:

 $Y = \beta_1 (10)^{\beta_{2t/(y+t)}} + u_t$

Where Y = pressure and t = temperature. Using the method of nonlinear least squares (NLLS), obtain the normal equations for this model.

- Q. 3 Which one of these models you will prefer for estimation of lag models and why?(20)
 - (a) Method of Instrumental variable
 - (b) Almon Polynomial Distributed Lag Model
- Q. 4 Write notes on the followings;
 - (a) Interpolation
 - (b) Data Filtering

Pass Marks: 50

(20)

(20)

- (c) Data Mining
- (d) Aggregation
- Q. 5 The following table shows the value of imports (Y), the level of Gross National Product (X_1) measured in arbitrary units, and the price index of imported goods (X_2) , over the twelve-year period 1960-71 for a certain country. (20)

	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971
Y	57	43	73	37	64	48	56	50	39	43	69	60
X_1	220	215	250	241	305	258	354	321	370	375	385	385
X_2	125	147	118	160	128	149	145	150	140	115	155	152

- (a) Estimate the import function $Y = b_0 + b_1 X_1 + b_2 X_2 + u$.
- (b) What is the economic meaning of your estimates?
- (c) Conduct tests of significance for the regression estimates at 5 per cent and 1 per cent levels of significance.
- (d) Compute the coefficient of multiple determination.
